CRYSTAL AND MOLECULAR STRUCTURE OF LITHIUM BENZOHYDROXAMATE-BENZOHYDROXAMIC ACID (1: 1) ADDUCT

Roman RERICHA ${ }^{a}$, Ivana Cisarova ${ }^{b}$ and Jaroslav PodLaHA ${ }^{b, *}$
${ }^{a}$ Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, 16502 Prague 6-Suchdol, Czech Republic
${ }^{b}$ Department of Inorganic Chemistry,
Charles University, 12840 Prague 2, Czech Republic

Received October 13,1995
Accepted November 10, 1995

The crystal structure of the title compound was determined by single crystal X-ray diffraction. It consists of molecules of benzohydroxamic acid, its O-deprotonated anions and lithium cations in the $1: 1: 1$ molar ratio. Although the molecular geometry of the anion is very similar to that of the acid, these units can be unambiguously distinguished since the short hydrogen bond between the OH group of the acid and the N-bonded oxygen atom of the anion is remarkably asymmetric. This bond, together with the lithium cations (being surrounded by five oxygens), links the units into chains running in the crystallographic $a b$ plane. The coordination polyhedron around Li represents a rare example of an almost undistorted LiO_{5} square pyramidal arrangement.
Key word: Benzohydroxamic acid, adduct with lithium benzohydroxamate.

Despite the importance of hydroxamic acids in biological processes, their structure is often poorly characterized. Some of the problems delineated in an early review ${ }^{1}$ have been clarified in recent papers ${ }^{2-4}$. Little is known, however, about the solid state structures of simple hydroxamate salts in which deprotonation site(s) of the anion should, in principle, depend on the charge, size and hard-soft character of the countercation. We describe here the synthesis and crystal structure of the acid salt of benzohydroxamic acid with Li^{+}as the representative of small univalent cations of remarkably hard character.

EXPERIMENTAL

Synthesis

A boiling aqueous suspension of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ was filtered into 0.1 m benzohydroxamic acid in 10% (v / v) aqueous methanol (10 ml). The resulting solution (total volume 18 ml) was partly evaporated by boil-

[^0]ing to 15 ml and left to crystallize by slow evaporation at room temperature. Colourless needles up to several mm in length suitable for X-ray diffraction were obtained.

Single-Crystal X-Ray Diffraction - Crystal and Measurement Data
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{LiN}_{2} \mathrm{O}_{4}$, m.w. 190.64, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=5.1956$ (6), $b=$ 12.4431(6), $c=20.192(1) \AA, V=1305.4(2) \AA^{3}, Z=4, D_{\mathrm{c}}=1.426 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=584$. A colourless prismatic crystal of the dimensions $0.18 \times 0.21 \times 0.57 \mathrm{~mm}$ was measured at 293(2) K on a CAD4 diffractometer with graphite-monochromated $\mathrm{MoK} \alpha$ radiation ($\lambda=0.71073 \AA$). Absorption was neglected $\left(\mu=0.104 \mathrm{~mm}^{-1}\right)$. The cell parameters were determined from 25 reflections in the

Table I
Atomic coordinates $\left(.10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA .10^{3}\right)$. $U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $\boldsymbol{U}_{i j}$ tensor

Atom	x			
O1	$5158(2)$	$-1025(1)$	$-761(1)$	U_{eq}
O2	$1033(2)$	$-366(1)$	$-135(1)$	$37(1)$
N1	$5283(3)$	$-203(1)$	$-300(1)$	$36(1)$
C1	$3259(3)$	$1004(1)$	$466(1)$	$33(1)$
C2	$5177(3)$	$1782(1)$	$449(1)$	$29(1)$
C3	$5182(4)$	$2601(2)$	$910(1)$	$38(1)$
C4	$3298(4)$	$2642(2)$	$1393(1)$	$45(1)$
C5	$1395(4)$	$1877(2)$	$1408(1)$	$49(1)$
C6	$1367(3)$	$1064(2)$	$944(1)$	$52(1)$
C7	$3108(3)$	$97(1)$	$-11(1)$	$41(1)$
Li	$3174(5)$	$1955(2)$	$4600(1)$	$28(1)$
O11	$1797(2)$	$2538(1)$	$5453(1)$	$31(1)$
O12	$-2267(2)$	$1885(1)$	$6136(1)$	$28(1)$
N11	$2018(3)$	$1895(1)$	$6010(1)$	$36(1)$
C11	$349(3)$	$931(1)$	$6934(1)$	$27(1)$
C12	$-1420(4)$	$142(2)$	$7085(1)$	$27(1)$
C13	$-1075(4)$	$-513(2)$	$7632(1)$	$41(1)$
C14	$1034(4)$	$-376(2)$	$8031(1)$	$54(1)$
C15	$2768(4)$	$427(2)$	$7897(1)$	$51(1)$
C16	$2457(3)$	$1075(2)$	$7348(1)$	$46(1)$
C17	$-72(3)$	$1609(1)$	$6333(1)$	$38(1)$
HO1	$6494(49)$	$-1578(19)$	$-616(11)$	$26(1)$
HN1	$6712(40)$	$30(16)$	$-206(9)$	$66(7)$
HN11	$3561(39)$	$1742(14)$	$6131(8)$	$39(5)$
			$32(5)$	

Table II
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses. Symmetry code: (i), $0.5-x,-y, z-0.5$; (ii), $x-0.5, y-0.5,1-z$; (iii), $x+0.5, y-0.5,1-z$; (iv), $0.5-x,-y, z$ + 0.5; (v), $1-x, y-0.5,0.5-z$; (vi), $x+1, y, 0.5-z$

Acid		Anion	
Atoms	Bond lengths	Atoms	Bond lengths
C1-C2	1.390(2)	C11-C12	1.378(2)
C1-C6	1.379(2)	C11-C16	1.390 (2)
$\mathrm{C} 1-\mathrm{C} 7$	1.486 (2)	C11-C17	$1.494(2)$
C2-C3	1.381(2)	C12-C13	$1.385(3)$
$\mathrm{C} 3-\mathrm{C} 4$	1.382(3)	C13-C14	1.371(3)
C4-C5	1.373 (3)	C14-C15	$1.372(3)$
C5-C6	1.379 (3)	C15-C16	1.381(2)
C7-O2	1.248(2)	C17-O12	$1.256(2)$
C7-N1	1.325 (2)	C17-N11	1.316 (2)
O1-N1	$1.384(2)$	O11-N11	$1.385(2)$
N1-HN1	$0.82(2)$	N11-HN11	0.86(2)
O1-HO1	1.02(2)		
Atoms	Bond angles	Atoms	Bond angles
C2-C1-C6	119.4(2)	C12-C11-C16	119.0(2)
C2-C1-C7	123.36(14)	C12-C11-C17	118.90(14)
C6-C1-C7	117.2(2)	C16-C11-C17	122.1(2)
C1-C2-C3	120.6(2)	C11-C12-C13	120.6(2)
C4-C3-C2	120.1(2)	C14-C13-C12	119.9(2)
C5-C4-C3	120.0(2)	C13-C14-C15	120.0(2)
C4-C5-C6	120.0(2)	C14-C15-C16	120.4(2)
C5-C6-C1	120.5(2)	C15-C16-C11	120.0(2)
O2-C7-N1	$121.19(14)$	O12-C17-N11	121.22(13)
O2-C7-C1	$121.76(14)$	$\mathrm{O} 12-\mathrm{C} 17-\mathrm{C} 11$	$123.03(14)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$117.05(14)$	$\mathrm{N} 11-\mathrm{C} 17-\mathrm{C} 11$	$115.74(14)$
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{Li}^{\mathrm{i}}$	101.69(11)	$\mathrm{N} 11-\mathrm{O} 11-\mathrm{Li}^{\mathrm{ii}}$	107.83(11)
		N11-O11-Li	$117.36(11)$
		$\mathrm{Li}^{\mathrm{ii}}-\mathrm{O} 11-\mathrm{Li}$	114.02(10)
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{Li}^{\mathrm{i}}$	108.55(12)	$\mathrm{C} 17-\mathrm{O} 12-\mathrm{Li}^{\mathrm{ii}}$	108.41(12)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{O} 1$	$117.65(14)$	C17-N11-O11	$119.33(13)$
C7-N1-HN1	125(1)	C17-N11-HN11	125(1)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{HN} 1$	117(1)	O11-N11-HN11	116(1)

Table II
(Continued)

Atoms	Bond lengths	Atoms	Bond angles
Li-environment			
Li-O11	2.001(3)	O11 ${ }^{\text {iii }}$-Li-O11	105.68(13)
Li-O11 ${ }^{\text {iii }}$	1.988(3)	$\mathrm{O} 11^{\text {iii }}-\mathrm{Li}-\mathrm{O} 12^{\text {iii }}$	81.14(10)
$\mathrm{Li}-\mathrm{O} 12{ }^{\text {iii }}$	2.084(3)	O11-Li-O12 ${ }^{\text {iii }}$	108.89(13)
$\mathrm{Li}-\mathrm{O} 2^{\text {iv }}$	2.089(3)	$\mathrm{O} 11^{\text {iii }}-\mathrm{Li}-\mathrm{O} 2^{\text {iv }}$	97.33(12)
$\mathrm{Li}-\mathrm{O1}{ }^{\text {iv }}$	2.206 (3)	$\mathrm{O} 11-\mathrm{Li}-\mathrm{O} 2^{\text {iv }}$	101.15(12)
		$\mathrm{O} 12{ }^{\text {iiii }}-\mathrm{Li}-\mathrm{O} 2^{\text {iv }}$	149.2(2)
		$\mathrm{O} 11^{\text {iii }}-\mathrm{Li}-\mathrm{O} 1^{\text {iv }}$	153.1(2)
		O11-Li1-O1 ${ }^{\text {iv }}$	101.16(12)
		$\mathrm{O} 12{ }^{\text {iii }}-\mathrm{Li}-\mathrm{O} 1^{\text {iv }}$	92.36(11)
		$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Li}-\mathrm{O} 1^{\text {iv }}$	75.08(10)
Hydrogen bonding			
O1...O11 ${ }^{\text {v }}$	2.467(2)	O1-HO1...O11 ${ }^{\text {vi }}$	173(2)
HO1...O11 ${ }^{\text {v }}$	1.45(2)		

$15-19^{\circ} \theta$-range. The intensities of reflections were measured by the $\theta-2 \theta$ scan between $h\langle-6,6\rangle, k\langle 0,15\rangle$, $l(0,24\rangle, \theta_{\max }=26^{\circ}$. Three standard reflections monitored every 1 h showed an intensity variation of 2%. Of 2742 measured reflections, 2565 were unique ($R_{\text {int }}=0.015$) and 2182 were regarded as "observed" according to the $I \geq 2 \sigma(I)$ criterion.

Data Treatment

The structure was solved by direct methods ${ }^{5}$ (SHELXS86) and refined ${ }^{6}$ by SHELXL93 using a fullmatrix least-squares procedure based on F^{2}. Phenyl hydrogens were fixed in calculated positions and assigned the isotropic displacement parameters of their bonding carbons multiplied by 1.2 ; the N - and O-bonded hydrogen atoms, clearly visible on the difference map, were refined isotropically. The function minimized was $\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$, where $w=1 /\left[\sigma^{2}\left|F_{\mathrm{o}}^{2}\right|+(0.0376 P)^{2}+0.15 P\right], P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$. Convergence for 202 parameters was achieved at $R=0.0291, R_{\mathrm{w}}=0.0713$, GOF $=1.048,(\Delta / \sigma)_{\max }=$ ± 0.001 for non-H atoms. The final difference electron density map was featureless with extremum values of $0.12 ;-0.24 \mathrm{e}^{-3}$.

The final atom coordinates are in Table I and bond lengths and angles in Table II. The tables of the observed and calculated structure factors and of the anisotropic displacement parameters, as well as the standard CIF files produced by SHELXL93, can be obtained upon request.

DESCRIPTION OF STRUCTURE

The symmetrically independent part of the structure (Fig. 1) consists of one lithium cation, one benzohydroxamate anion and one molecule of benzohydroxamic acid. As expected for the hard lithium cation, the deprotonated site of the anion is the N-bonded oxygen atom. Although the anion and the acid are metrically very similar (see Fig. 2 for their superposition), they can be easily distinguished since the locations of the critical hydrogen atom HO1 (and of HN1 and HN11, too) are unambiguous. The geometry of the "organic" part is unexceptional and the bond distances lie within the ranges tabulated for similar fragments ${ }^{7}$. Both the planarity of the $\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{O}$ fragments (within $\pm 0.009 \AA$) and the involved bond distances and angles indicate a high degree of electron delocalization. Moreover, the formally single bond linking the phenyl and hydroxamate groups is shortened significantly. The hydroxamate fragments differ a little in the amount of twist around this bond: the dihedral angle between the mean planes of hydroxamate and phenyl groups is $24.35(10)^{\circ}$ for the anion and $35.42(8)^{\circ}$ for the acid. It appears, however, that this is the consequence of hydrogen bonding rather than an indication of different electronic distribution within the anion and the acid.

From the viewpoint of coordination chemistry, the behavior of the anion and of the acid as ligands towards lithium is totally different. While the acid acts as a bidentate $\mathrm{O}, \mathrm{O}^{\prime}$-chelating donor, the anion is terdentate: $\mathrm{O}, \mathrm{O}^{\prime}$-chelating to one lithium cation and simultaneously O -bridging through the deprotonated oxygen atom O11 to the second, symmetry-related lithium cation. This bonding mode is satisfied through a chain of LiO_{5} polyhedra linked by one common vertex (Fig. 3). The chain runs parallel to the crystallographic $a b$-plane and is further stabilized by a short hydrogen bond between

Fig. 1
View of symmetrically independent part of the structure with atom labelling; lithium environment completed by intermolecular contacts; H-bond involving O11 shown as dotted line. For symmetry code, see Table II

Fig. 2
Superposition of hydroxamic acid (thick lines) and hydroxamate anion; phenyl ring taken as reference
the OH group of the acid and the deprotonated oxygen atom of the anion. In contrast to many similar cases of polymeric acid salts of this type (see ref. ${ }^{8}$ for a recent example and for discussion of this phenomenon), this hydrogen bond is markedly asymmetric, thus excluding any possibility of "averaging" the acid and the anion. Five oxygen atoms are located around lithium at the distances of $1.988-2.206 \AA$ in a spatial arrangement which is uncommon for lithium cation. The polyhedron approximates closely to tetragonal pyramid having one O11 atom of the anion at the axial site and the second, symmetry-related O11 atom at the equatorial site; the remaining equatorial positions are occupied by the O 12 atom of the anion and the $\mathrm{O} 1, \mathrm{O} 2$ atoms of the chelated acid. In general, LiO_{5} polyhedra are infrequent and only 25 such fragments could be retrieved from Cambridge Structural Database ${ }^{9}$. The analysis of their shape according to the method of Muetterties and Guggenberger ${ }^{10}$ (which is capable to characterize the distortion of bond angles quantitatively) suffered from vast differences of Li-O bond lengths in most of the polyhedra, as might be expected for a non-transition element. To take these differences into account, the data were parametrized as follows. In the scatterogram depicted in Fig. 4, the y-axis is defined as $\Delta=\left[\Sigma\left|\left(d_{\mathrm{m}}-d_{\mathrm{i}}\right)\right|\right] / 5$, i.e., as the average difference between the mean $\mathrm{Li}-\mathrm{O}$ distance, and the individual five distances; the x-axis is $\alpha=\delta_{3}-\delta_{2}$ and describes the Berry pseudorotation which interconverts the two idealized pentacoordinated polyhedra, trigonal bipyramid and tetragonal pyramid. The

Fig. 3
Fragment of chain of LiO_{5} polyhedra showing hydrogen bonds between hydroxamate fragments
δ 's are the second and third lowest dihedral angles between the adjacent polyhedron faces according to Muetterties and Guggenberger's definition. Since the values of δ_{2}, δ_{3}, α are $53.1,53.1,0^{\circ}$ for regular trigonal bipyramid but $0,75.7,75.7^{\circ}$ for tetragonal pyramid, the horizontal axis of the scatterogram describes the pathway interconverting the idealized forms, and the vertical axis is a qualitative measure of the overall deformation originating from unequal bond lengths. Clearly, most fragments may be described as more or less distorted trigonal bipyramid and only five of them are close to tetragonal pyramid. Within the square pyramidal family, all polyhedra are isolated with $\mathrm{Li}-\mathrm{Li}$ distances greater than $5 \AA$. Hence, the present structure appears to be unique with respect to the linking of the square pyramidal LiO_{5} polyhedra.

Fig. 4
Scatterogram of geometry of LiO_{5} polyhedra (the present structure is marked by arrow). For definition of axes, see text. Compound CODENs and short references from CSD are as follows: a CAWREX20, J. Inclusion Phenomena 12, 341 (1992); b DIVVUZ, J. Chem. Res. 388, 4201 (1985); c DIXSIM, Inorg. Chim. Acta 111, L39 (1986); d DOLJAP, Proc. Natl. Acad. Sci. 82, 7155 (1985); e DOZZAT, Inorg. Chem. 25, 1027 (1986); f FADHEX, Acta Crystallogr., C 42, 1329 (1986); g GAVZAE, Tetrahedron Lett. 29, 1259 (1988); h, i GAXYUZ, j, k GAXZAG, Rev. Chim. Miner. 24, 382 (1987); I GEKFOR, Polyhedron 4, 567 (1985); m, n HAGREM, Acta Chem. Scand. 47, 663 (1993); 0, p, q JAKCIH, Z. Naturforsch., B 44, 444 (1989); r JITREJ, Acta Crystallogr., C 47, 1968 (1991); s KEXDIA, Can. J. Chem. 68, 1201 (1990); t KEXXAM, Can. J. Chem. 68, 49 (1990); u KOCXUV, J. Am. Chem. Soc. 113, 6570 (1991); v PAHXEB, Z. Naturforsch., B 47, 1141 (1992); w SEMWUC, Acta Crystallogr., C 46, 465 (1990); x WEVREU, Tetrahedron Lett. 35, 2525 (1994); y YADTIG, Z. Anorg. Allg. Chem. 612, 72 (1992)

This work was supported by the Grant Agency of the Czech Republic through Grants Nos 203/93/0154 and 203/93/2463, and through Grant No. 472106 of the Grant Agency of the Academy of Sciences of the Czech Republic.

REFERENCES

1. Bauer L., Exner O.: Angew. Chem. 86, 419 (1974).
2. Decouzon M., Exner O., Gal J.-F., Maria P.-C.: J. Org. Chem. 55, 3980 (1990).
3. Exner O., Mollin J., Hradil M.: Collect. Czech. Chem. Commun. 58, 1109 (1993).
4. Remko M., Mach P., Schleyer P.v.R., Exner O.: J. Mol. Struct. Theochem 279, 139 (1993).
5. Sheldrick G. M.: Acta Crystallogr., A 46, 467 (1990).
6. Sheldrick G. M.: SHELXL93. Program for Crystal Structure Refinement from Diffraction Data. University of Göttingen, Göttingen 1993.
7. Allen F. H., Kennard O., Watson D. G., Brammer L., Orpen A. G., Taylor R.: J. Chem. Soc., Perkin Trans. 2 1987, S1.
8. Allen F. H., Davies J. E., Galloy J. J., Johnson O., Kennard O., Macrae C. F., Mitchell G. F., Smith J. M., Watson D. G.: J. Chem. Inf. Comp. Sci. 31, 187 (1991).
9. Podlaha J., Podlahova J.: Collect. Czech. Chem. Commun. 59, 359 (1994).
10. Muetterties E. L., Guggenberger L. J.: J. Am. Chem. Soc. 96, 1748 (1974).

[^0]: * The author to whom correspondence should be addressed.

